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ABSTRACT
The Upper Jurassic Morrison Formation classically represents the “Golden Age” of sauropods, and the 

Morrison Formation is reported to have yielded 13 genera and 24 species of sauropods. This incredible 
diversity has produced numerous theories attempting to reconcile the co-occurrence of such large, and 
similar taxa. Previously, a comparably high diversity has been proposed for the Late Cretaceous Hell Creek 
Formation of North America – possibly comprising nearly three dozen species from over 20 genera of an-
kylosaura, caenagnathids, ceratopsians, dromaeosaurids, hadrosaurs, ornithomimids, pachycephalosaurs, 
thescelosaurs, and tyrannosaurs. However, much of the morphologic variation previously ascribed to taxo-
nomic differences has recently been shown to be a result of stratigraphy and/or ontogeny – resulting in this 
rich assemblage being downsized to 13 genera and 16 species. Whereas still rich in diversity, such factors 
have an immediate effect towards our reconstruction of true richness.

Following the example of the Hell Creek Formation, we can investigate the ontogenetic and strati-
graphic origin of possible diversity inflation in other formations, and within this study, apply it to the Mor-
rison Formation. New dating techniques are resulting in finer temporal resolution, and are changing the 
temporal position of well-known quarries. Differences in body size and ontogenetic stages can also affect 
diversity estimates. Plotting body size stratigraphically, it initially appears that larger specimens (interpret-
ed as different species) occur higher in the section. An increase in average body size may be a legitimate 
trend, but there are several specimens that counter this “rule” for many genera. Likewise, dramatic allo-
metric ontogenetic trajectories have led to the erection of at least three diplodocid genera – Amphicoelias, 
Seismosaurus, and Suuwassea – and it is suspected that many more Morrison Formation “species” could 
alternatively be explained as ontogimorphs. We have a long way to go towards revealing the true nature of 
Morrison Formation sauropod diversity. Although dietary partitioning undoubtedly occurred at the level 
of both the species (e.g., Brachiosaurus vs. Diplodocus) and between ontogenetic stages, a base of 24 levels 
of co-occurring divisions seems unlikely. The Morrison Formation may have exhibited a sauropod-rich as-
semblage unlike any other in North America, and the implications of stratigraphy, ontogeny, and variation 
may be minor, yet these factors alter perceived “diversity.” True diversity will not be fully understood unless 
these factors are considered. 

What Factors Influence our Reconstructions of Morrison Formation Sauropod Diversity?
D. Cary Woodruff1,2,3

1Royal Ontario Museum, 2Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, 
3Great Plains Dinosaur Museum & Field Station, Malta, MT, USA; sauropod4@gmail.com
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INTRODUCTION
The Upper Jurassic Morrison Formation of the 

western United States of America was home to some 
of the most classic of dinosaur species. Though the 
Morrison Formation is well known for theropods (e.g., 
Allosaurus), thyreophorans (e.g., Stegosaurus), and or-
nithopods (e.g., Camptosaurus), the sauropods are the 
quintessential Morrison dinosaurs. Species such as 
Apatosaurus, Brachiosaurus, Camarasaurus, and Di-
plodocus—discovered well over a century ago—are 
still famed, highly regarded, and important taxa. It is 
not just the species of sauropods found in the Morri-
son Formation that are unique, however, but also their 
apparent diversity. If interpretations are correct, the 
Morrison Formation was home to 13 to 14 genera and 
24 species of sauropods—Amphicoelias altus, A. fragil-
limus (a.k.a., “Maraapunisaurus” of Carpenter, 2018), 
Apatosaurus ajax, A. louisae, A. excelsus, A. parvus, A. 
yahnahpin (the last three may alternatively belong to 
Brontosaurus [Tschopp and others, 2015]), Barosaurus 
lentus, Brachiosaurus altithorax, Camarasaurus grandis, 
C. lentus, C. lewisi, C. supremus, Diplodocus carnegii, D. 
hallorum, D. longus, Dystrophaeus viaemalae, Galeamo-
pus hayi, G. pabsti, Haplocanthosaurus delfsi, H. priscus, 
Kaatedocus siberi, Supersaurus vivianae, and Suuwassea 
emilieae (figure 1). Although the Morrison Formation 
was geographically expansive—representing an area of 
1.5 million square km (Dodson and others, 1980; Fos-
ter, 2007)—how could 24 of some of the largest terres-
trial herbivores ever co-exist? Niche and dietary parti-
tioning could account for some of this species richness, 
but we can also examine the realities of such seemingly 
high species co-occurrence. 

The Late Cretaceous Hell Creek Formation rep-
resents a dinosaur-bearing formation that is historically 
well known and extensively studied, with similarly high 
dinosaur diversity to that of the Morrison Formation. 
However, over the past decade, ontogenetic and strati-
graphic assessments (Horner and Goodwin, 2006, 2008, 
2009; Scannella and Fowler, 2009; Scannella and Horn-
er, 2010, 2011; Campione and Evans, 2011; Horner and 
others, 2011; Scannella and Fowler, 2014; Scannella and 
others, 2014; Goodwin and Evans, 2016; Fowler 2017; 
Wosik and others, 2017, 2018) have reassessed the diver-

sity, life development, and evolution of the Hell Creek 
Formation dinosaurs. These analyses alternatively sug-
gest lower species richness. Using the Hell Creek For-
mation diversity analysis as a guide, we can re-examine 
the Morrison Formation sauropod diversity, assessing 
the effect considering ontogeny and stratigraphy.

INSTITUTIONAL ABBREVIATIONS
ANS: Academy of Natural Sciences, Philadelphia, 

Pennsylvania; DNM: Dinosaur National Monument, 
Jensen, Utah; GMNH: Gunma Museum of Natural His-
tory, Japan; NMMNH: New Mexico Museum of Natu-
ral History, Albuquerque, New Mexico; OMNH: Sam 
Noble Oklahoma Museum of Natural History, Norman, 
Oklahoma.

 
FACTORS INFLUENCING OUR VIEW

OF DIVERSITY

Ontogeny
Compared to many other dinosaur groups, sau-

ropod ontogeny has received relatively less attention, 
and has been mostly restricted to histologic analysis of 
relative bone maturity (including Curry, 1999; Sander, 
2000; Sander and Tückmantel, 2003; Klein and Sander, 
2008; Lehman and Woodward, 2008; Woodward and 
Lehman, 2009; Sander and others, 2011; Waskow and 
Sander, 2014; Rogers and others, 2016). Although no 
sauropod nesting sites are yet known from the Morri-
son Formation, based on those from South America, 
such as Auca Mahuevo (Chiappe and others, 1998), 
the potential difference in body mass between a hatch-
ling and an adult Morrison Formation sauropod is at 
least four orders of magnitude. Descriptions of imma-
ture Morrison Formation sauropods (Gilmore, 1925; 
Carpenter and McIntosh, 1994; Foster, 1995; Britt and 
Naylor, 1996; Curtice and Wilhite, 1996; Curry, 1999; 
Foster, 2005a; Schwarz and others, 2007; Myers and 
Storrs, 2007; Myers and Fiorillo, 2009; Whitlock and 
others, 2010; Carballido and others, 2012; Storrs and 
others, 2012; Tschopp and Mateus, 2013; Hedrick and 
others, 2014; Tschopp and others, 2015; Woodruff and 
others, 2015, 2017; Melstrom and others, 2016; Hanik 
and others, 2017, show that sauropods did not grow iso-
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metrically (though some appendicular elements gener-
ally appear more isometric than allometric; Woodruff 
and others, 2017). Sauropod ontogenetic development 
is still the subject of much discussion (Whitlock and 
Harris, 2010; Whitlock and others, 2010; Woodruff and 
Fowler, 2012; Wedel and Taylor, 2013; Hedrick and oth-
ers, 2014; Tschopp and others, 2015; Melstrom and oth-
ers, 2016; Woodruff and others, 2017), and continuing 
investigations and conversations are invaluable. This 
review adheres to the hypothesis that sauropods under-
went radical ontogenetic development, but I strongly 
encourage readers to examine all sides of this discus-
sion.

The implications of ontogeny could complicate our 
understanding of the species richness within Morrison 
Formation sauropods. If these sauropods did undergo 
radical size and ontogenetic changes, how do we recog-
nize these growth stages, and how do we assign ontogi-
morphs to genera?

Several studies have examined sauropod matura-

tional states. Some of these studies rely on morpholo-
gy (Whitlock and others, 2010; Woodruff and Fowler, 
2012; Wedel and Taylor, 2013; Carballido and Sander, 
2014), whereas others rely on histology (Curry, 1999; 
Sander, 1999, 2000; Klein and Sander, 2008; Lehman 
and Woodward, 2008; Griebeler and others, 2013; 
Mitchell and others, 2017). Whereas histology is the 
demonstrably proven way to assess and verify maturi-
ty in dinosaurs (see Padian and Lamm [2013] and the 
sources therein), given the extreme changes throughout 
growth, understanding the development and life histo-
ry of a sauropod represents a complex association with 
both morphology and histology.

Contrary to previous speculation, sauropods did 
not take centuries to mature (sensu Curry, 1999; Sand-
er, 1999, 2000; Erickson and others, 2001; Sander and 
Tückmantel, 2003; Sander and others, 2004; Rogers and 
Erickson, 2005; Lehman and Woodward, 2008; Wood-
ward and Lehman, 2009; Griebeler and others, 2013; 
Waskow and Sander, 2014; Woodruff and others, 2017). 

Figure 1. The entirety of possible sauropod species within the Morrison Formation. Amphicoelias: A. altus (or 
Diplodocus altus [Woodruff and Foster, 2014]), A. fragillimus (a.k.a., “Maraapunisaurus” of Carpenter, 2018); Ap-
atosaurus: A. ajax, A. louisae, A. excelsus, A. parvus, A. yahnahpin (the last three may alternatively belong to 
Brontosaurus [Tschopp and others, 2015]); Barosaurus lentus; Brachiosaurus altithorax; Camarasaurus: C. grandis, 
C. lentus, C. lewisi, C. supremus; Diplodocus: D. carnegii, D. hallorum, D. longus; Dystrophaeus viaemalae; Galea-
mopus: G. hayi, G. pabsti; Haplocanthosaurus: H. delfsi, H. priscus; Kaatedocus siberi; Supersaurus vivianae; Suu-
wassea emilieae. As historically portrayed in other dinosaur-bearing formations, the sauropods of the Morrison 
Formation are largely depicted as homogenized – an inaccurate portrayal for numerous reasons outlined in this 
review. Species to supposed scale. Silhouettes by S. Hartman available via PhyloPic (Creative Commons Attribu-
tion-ShareAlike 3.0 Unported).
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Recent histologic analyses have recorded an estimat-
ed maximum age-of-death in the thirties to forties in 
specimens of Camarasaurus and Diplodocus (Waskow 
and Sander, 2014; Woodruff and Foster, 2017; Wood-
ruff and others, 2017). Although maximum longevity 
is unattainable, the majority of sauropods likely fell 
within the half century interval, although some exceed-
ingly rare specimens may have extended this envelope 
(Wings and others, 2007; D.C. Woodruff, personal ob-
servations). Thanks to the pioneering work of Waskow 
and Sander (2014), sauropod dorsal rib histology allows 
for numerical age estimates as opposed to maturation-
al rankings (Histological Ontogenetic Stage; Klein and 
Sander, 2008). 

As paleontology relies on morphology in part to 
distinguish different species, these growth differences/
changes are quantifiable with radical ontogenetic trajec-
tories. If we had several specimens that unbeknownst to 
us represented a growth series, given their “unique” and 
“defining” characters/combinations, one could identify 
each specimen as a separate taxon. How then are we to 
separate taxa from ontogimorphs?

The case for Triceratops ontogeny and synonymy, 
although still debated, (Scannella and Horner, 2010, 
2011; Longrich and Field, 2012; Mairoino and others, 
2013) represents a good case study. This species-rich 
genus was previously thought to consist of over a doz-
en species, all co-existing. However, analyses by Horner 
and Goodwin (2006, 2008) demonstrated that this high 
degree of morphologic variability was largely caused by 
ontogenetic development within two species. Thus, the 
Hell Creek Formation chasmosaurines were reduced to 
T. horridus, T. prorsus, and Torosaurus latus. Scannella 
and Horner (2010) later “reduced” this diversity even 
more by identifying that Torosaurus was an extremely 
mature individual of Triceratops. From the studies of 
Horner and Goodwin (2006, 2008) and Scannella and 
Horner (2010), the Hell Creek Formation “lost” over 
90% of its chasmosaurine diversity. 

The conclusions of Horner and Goodwin (2006; 
2008) were reached based on morphology that was 
ultimately corroborated via histology (Scannella and 
Horner, 2010; Horner and Lamm, 2011); thus, histol-
ogy proved to be the test. Combining morphology and 
histology allowed for the recognition of ontogenetic 

change, and how these changes occurred (echoed by 
Hone and others, 2016). As done for Triceratops, we 
should be taking a similar approach towards the Mor-
rison Formation sauropods. Once several specimens 
have been morphologically and histologically studied, 
then comparisons can be made regarding (1) changes 
through ontogeny and (2) differences among taxa. In 
doing so, groupings or patterns may start to occur, such 
as different growth stages grouping together (“juve-
niles” will group separately from “adults”), and similar-
ities and/or differences among taxa will become more 
evident (i.e., immature Diplodocus and Apatosaurus are 
more alike, but both are more distinct from immature 
Camarasaurus; Woodruff and others, 2017; figure 2).

Given the incompleteness of the fossil record, many 
purportedly new genera may represent immature speci-
mens of known taxa. The Morrison Formation sauropod 
Suuwassea emilieae may be one such example. Recog-
nized from a single individual (specimen ANS 21122), 
the taxonomy of Suuwassea has been debated (Harris 
and Dodson, 2004; Lovelace and others, 2008; Whitlock 
and Harris, 2010; Whitlock, 2011a; Woodruff and Fowl-
er, 2012; Wedel and Taylor, 2013; Hedrick and others, 
2014; Tschopp and others, 2015; Woodruff and others, 
2017). Histology shows that specimen ANS 21122 lacks 
an External Fundamental System (EFS) (Hedrick and 
others, 2014; Woodruff and others, 2017; EFS, the skele-
tal indicator of osteogenesis—Padian and Lamm, 2013). 
Yet the morphologies have been interpreted to be valid, 
distinguishable characters (Harris and Dodson, 2004; 
Wedel and Taylor, 2013; Hedrick and others, 2014), or 
alternatively ontogenetic (Woodruff and Fowler, 2012; 
Woodruff and others, 2017). Aside from the differing 
taxonomic interpretations, the holotype of Suuwassea 
represents a relatively small-statured immature animal 
with intriguing morphologies (see a list of these features 
in Woodruff and Fowler, 2012). Currently the holotypic 
material of Suuwassea could equally represent an im-
mature individual from a known taxon, a distinct taxon, 
a maturationally varied individual or taxon with pedo-
morphic attributes, and possibly a combination of these 
conditions. At this time the holotype does not unani-
mously support one distinct interpretation.

Another example from the Morrison Formation is 
the sauropod Diplodocus hallorum. Originally known 
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Figure 2. Caption is on the following page.
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as “Seismosaurus” (specimen NMMNH P-3690; Gil-
lette, 1991), this specimen likely represents one of the 
largest Morrison Formation sauropods (Woodruff and 
Foster, 2014). Whereas this taxon was originally diag-
nosed mainly on postcranial proportional differences, 
in a reassessment of the genus, Lucas and others (2006) 
proposed that these differences were simply due to its 
extreme body size (and the “hook-like” ischium was 
found to be inaccurate; Lucas and others, 2006). Now 
indistinguishable from Diplodocus, Lucas and others 
(2006) synonymized “Seismosaurus” into a species of 
Diplodocus. In their taxonomic revision of Diplodo-
cidea, Tschopp and others (2015) phylogenetically 
recognized several specimens now referable to D. hal-
lorum; however, the question remains whether the ho-
lotype of D. hallorum represents a distinct species, or 
an incredibly elderly Diplodocus. (Histologic analysis of 
specimen NMMNH P-3690 is currently underway by 
DCW and K. Waskow). Similar to the case of D. hal-
lorum is that of Amphicoelias. The holotype material 
of A. fragillimus hints at a posterior dorsal vertebra in 
excess of 2.8 m – making it unquestionably the largest 
vertebrate ever (Carpenter, 2006; Woodruff and Foster, 
2014; see also Carpenter, 2018). Serious doubt should 
be raised to the validity of this taxon (as all of the ho-
lotype material vanished; Woodruff and Foster, 2014), 
whereas we now have revised autamorphies for this 
species (Tschopp and others, 2015), as some of the first 
autamorphies for D. hallorum were size related (such as 
a more robust pubis; Lucas and others, 2006), does “big” 
necessarily equal distinct? 

Ontogeny should not just be considered when ex-
amining small-bodied individuals; large-bodied speci-
mens can be just as guilty (Trujillo and others, 2011). 
The rarity of Torosaurus compared to the prolific Tric-
eratops was proposed by Scannella and Horner (2010) 
to be the result of “Torosaurus” being a senescent Tric-
eratops. Nature is unkind to the young and old, and at-
tritional mortality shows that samples of specimens in 
these age ranges should be underrepresented (Lyman, 
1994). Whereas immature sauropods are known from 
the Morrison Formation (Gilmore, 1925; Carpenter 
and McIntosh, 1994; Foster, 1995; Britt and Naylor, 
1996; Curtice and Wilhite, 1996; Curry, 1999; Foster, 
2005a; Myers and Storrs, 2007; Schwarz and others, 
2007; Myers and Fiorillo, 2009; Whitlock and others, 
2010; Carballido and others, 2012; Storrs and others, 
2012; Tschopp and Mateus, 2013; Hedrick and others, 
2014; Tschopp and others, 2015; Woodruff and oth-
ers, 2015, 2017; Melstrom and others, 2016; Hanik and 
others, 2017), it might be possible that a few of these 
specimens, though identified as different species, may 
alternatively represent differing ontogenetic stages of 
known taxa. And while not yet histologically demon-
strated, the case of “Elosaurus” parvus (Peterson and 
Gilmore, 1902) representing an immature Apatosaurus 
(McIntosh, 1995; or Brontosaurus by Tschopp and oth-
ers, 2015), or Diplodocus “lacustris” (Marsh, 1884) being 
an immature Diplodocus (Upchurch and others, 2004; 
although see Tschopp and others, 2015), demonstrate 
that even previously, Morrison Formation sauropod di-
versity reconstructions have been altered by ontogeny.

Figure 2 is on the previous page. The interpretations that could result from single lines of evidence. Morphology: 
not only differing body sizes, but the differing cranial, vertebral, and limb morphologies between two specimens 
could result in the two being interpreted as separate taxa. Histology: from just the histology, only the individual 
ages of these specimens could be assessed from a growth perspective. However, by increasing the lines of evidence 
(here with histology and morphology), and additionally by incorporating more specimens, we see a growth series. 
Growth is gradational, so we should expect to see not just the extremes, but transitional forms (so “unique” char-
acter combinations may instead represent hallmarks of ontogeny). Human scale bar is Augustus Saint-Gaudens’ 
Diana of the Tower, depicting Diana as 1.83 m. Femora and histologic images modified from Woodruff and others 
(2017). Diplodocus sp. silhouettes modified from Woodruff and others (2017) and originally based on art by S. 
Hartman available via PhyloPic (Creative Commons Attribution-ShareAlike 3.0 Unported). Immature Diplodocus 
sp. skull drawing in Histology and Histo. - Morph. by K. Scannella, adult Diplodocus sp. and Suuwassea emilieae 
skulls in Histology and Histo. - Morph. from Whitlock (2011b).
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Biostratigraphy
The Morrison Formation represents a time interval 

of approximately 7 million years and spanning a geo-
graphical range of about 14° latitude and to 12° longi-
tude (Kowallis and others, 1998; Turner and Peterson, 
1999; Foster, 2007; Trujillo and Kowallis, 2015). Thus, 
the Morrison Formation represents a significant geo-
graphic region and temporal interval. Historically, the 
biota appeared to be homogeneously distributed within 
the formation with little if any recording of stratigraphic 
occurrence (especially during the “Bone Wars” of O.C. 
Marsh and E.D. Cope; Foster, 2007). In a pioneering at-
tempt to correlate localities and compile the stratigraph-
ic distribution of dinosaurs, Turner and Peterson (1999) 
correlated 230 Morrison Formation localities to the 
DNM section. From such correlations, Turner and Pe-
terson (1999) claimed the formation could be better un-
derstood as a single functional unit. Not only did Turn-
er and Peterson (1999) claim to correlate sections over 
vast areas with the aid of the so-called “clay change” (the 
sudden shift between the lower and upper Brushy Basin 
Member from non-smectitic to smectitic clays, which 
denotes increased volcanism), but they also claimed to 
see diversity and species patterns change. Camarasau-
rus lasted longer than Apatosaurus, Diplodocus survived 
longer than its sister taxon Barosaurus, and the perhaps 
distinct Amphicoelias appeared to be the last surviving 
sauropod within the formation (Turner and Peterson, 
1999). The incredibly detailed and thorough work of 
Turner and Peterson (1999) has served as a platform for 
subsequent Morrison Formation studies.

As demonstrated within the Hell Creek Formation, 
stratigraphy is an important consideration for diversi-
ty estimates (Horner and others, 2011; Scannella and 
others, 2014; Fowler, 2017). While Horner and Good-
win (2006) were able to show that Triceratops species 
diversity was a false artifact from ontogimorphs of two 
species, Scannella and others (2014) was able to refine 
this image by incorporating stratigraphic information. 
By plotting the stratigraphic position of over 50 speci-
mens of Triceratops and noting their ontogenetic states, 
Scannella and others (2014) were able to plot evolution-
ary patterns. Not only did they document morpholog-
ical details (such as the nasal horn increasing in size 

through time), but more importantly, they were able to 
plot the evolution of T. horridus to T. prorsus through 
anagenesis (Scannella and others, 2014). 

From the change in Triceratops within only ~1 mil-
lion years (Scannella and others, 2014), one might ex-
pect to see evolutionary changes in sauropods over the 
course of ~7 million years (Kowallis and others, 1998; 
Turner and Peterson, 1999; Trujillo and Kowallis, 2015) 
in the Morrison Formation. By correlating species oc-
currence within the formation, a body size trend may 
exist: Apatosaurus yahnahpin (or Brontosaurus yahnah-
pin; Tschopp and others, 2015) occurs prior to A. lou-
isae, Camarasaurus lentus occurs before C. supremus, 
and Diplodocus carnegii occurs prior to D. hallorum 
(Turner and Peterson, 1999; figure 3). It would seem 
that all of the smaller species occur before the larger; 
therefore, one could say that Morrison Formation sau-
ropods increased in size through time. However, when 
plotting additional species and specimens, it becomes 
apparent that this is not a strict rule. An Apatosaurus sp. 
(Museum of the Rockies [MOR] 857) from the strati-
graphically lower Salt Wash Member of the Morrison 
Formation equivalent may be comparable in size to 
the largest specimen ever collected (specimen OMNH 
1670) from the higher Brushy Basin Member equivalent 
levels of the Morrison Formation in western Oklahoma. 
The smallest species of Camarasaurus, C. lewisi, occurs 
stratigraphically between the larger C. lentus and C. su-
premus, and Diplodocus carnegii occurs before the larg-
er D. hallorum. However, we should not think of this 
as a strict trend, as the stratigraphically highest occur-
rence of Apatosaurus (within the upper meters of the 
Brushy Basin Member in Arches National Park, Utah), 
is of a size typical for the average adult lower in the for-
mation (Foster, 2005b). Tentatively, whereas body size 
increase is not a strict rule throughout the formation, 
average body size increases may be a legitimate trend 
(sensu Foster, 2007).

Plotting sauropod genera stratigraphically may 
even have the potential to highlight major evolu-
tionary processes. In 2013, the diplodocid Kaated-
ocus siberi (Tschopp and Mateus, 2013) was named 
from the Howe-Stevens Quarry in north-central Wy-
oming.  Whereas there has been some informal dis-
cussion as to whether this taxon is distinct or not, 
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based on cranial and vertebral morphologies the holo-
type of Kaatedocus may represent an immature individ-
ual (D.C. Woodruff, personal observations; and note 
not a synonymous ontogimorph). What has not been 
discussed in-depth is the stratigraphic occurrence. Cor-
related to the DNM stratigraphic section (Turner and 
Peterson, 1999), Kaatedocus appears to be stratigraph-
ically lower than any reported Diplodocus. Accord-
ing to Turner and Peterson (1999), all Diplodocus and 
Barosaurus specimens occur within the upper part of 
the Salt Wash or Brushy Basin Members or their equiv-
alents, whereas Kaatedocus may occur equivalently in 
the lower regions of the Salt Wash Member. More work 
and better resolution is needed—both ontogenetic and 
stratigraphic—but the apparent stratigraphic distinct-
ness could be used as evidence in favor for the validity 
of Kaatedocus. Furthermore, given that Kaatedocus is 
geologically one of oldest Morrison Formation diplodo-
cids known, it could represent part of a diplodocine 
cladogenic or anagenetic lineage (figure 4). As the Mor-
rison Formation temporally represents an increasing 
terrestrial space (Foster, 2007), and as fauna migrate 
into this newly acquired space through time, could we 
expect to document evolutionary changes? Anagene-
sis (potentially with Kaatedocus and the co-occurring 
diplodocid Galeamopus) and cladogenesis (Apatosau-
rus vs. Brontosaurus?) are evolutionary processes that 
should be considered. Fortunately, due to the wealth 
of time spent exploring the Morrison Formation and 
the vast number of specimens collected (Foster, 2007; 
Brinkman, 2010), these kinds of questions have the po-
tential to be examined.

Finally, the assumptions and inferences regarding 
Morrison Formation stratigraphy could be derived 
from a false signal. As presented herein, stratigraphic 
distribution of sauropods within the Morrison has been 
based around the framework created by Turner and 
Peterson (1999). Within the past decade, the reliabili-
ty of Turner and Peterson (1999) has been questioned. 
Starting with Trujillo (2006), it was demonstrated that 
the “clay change” was not supported by clay mineralogy 
nor X-ray diffraction (XRD) data. According to Trujil-
lo (2006), this marker unit was not a consistently de-
veloped horizon, and within a given section numerous 
clay-type alterations could occur. These findings meant 

that correlating sections in this manner, particular-
ly over such long distances, was not reliable (Trujillo, 
2006). 

After the Trujillo (2006) “clay change” study, there 
were a series of seminal papers reporting on U-Pb dates 
and recalibrated 40Ar/39Ar dates for several Morrison 
Formation localities (Trujillo and Chamberlain, 2013; 
Trujillo and others, 2014; Trujillo and Kowallis, 2015). 
Radiometric dating (such as K/Ar or 40Ar/39Ar) can rely 
on silicate (or potassium feldspar) minerals from over-
lying or underlying volcaniclastic deposits to determine 
a relative temporal interval (Olsson, 1986). However, by 
using non-detrital zircon crystals from smectitic mud-
stones, some of these newer studies were able to deter-
mine dates for localities previously dated with detrital 
material, in addition to new, and geographically distant 
localities (Trujillo and Chamberlain, 2013; Trujillo and 
others, 2014; Trujillo and Kowallis, 2015). As the stan-
dard used for 40Ar/39Ar dating and decay constants be-
came over time more refined, these necessitated recal-
ibration; and these recalibrated dates now correspond 
more favorably to the same derived from U-Pb (Trujillo 
and Kowallis, 2015). With these refined dates, while rel-
ative stratigraphic position of many localities remains 
the same, their position within a chronostratigraph-
ic context has changed. From 40Ar/39Ar dating, Turner 
and Peterson (1999) had the Mygatt-Moore Quarry in 
western Colorado correlated within the upper portion 
of the upper Brushy Basin Member between 147.8 ± 0.6 
and 150.3 ± 0.3 Ma. However, new studies conducted 
using zircon U-Pb chemical abrasion (CA-TIMS), still 
place this locality within the lower portion of the upper 
Brushy Basin Member, but with a date of 152.18 ± 0.29 
Ma (Trujillo and others, 2014; figure 4). In fact, based 
on recalibrated 40Ar/39Ar dates, the entire temporal po-
sitioning has likewise changed. From 40Ar/39Ar dating, 
Turner and Peterson (1999) chronostratigraphically 
placed the correlated dinosaur quarries between 148.1 
± 0.5 and 154.8 ± 0.6 Ma, yet 40Ar/39Ar recalibration by 
Trujillo and Kowallis (2015) refined this range to 150.00 
± 1.03 and 156.84 ± 1.18 Ma, respectively.

Newer magnetostratigraphic and sequence strati-
graphic studies are also changing the interpretation of 
the northern extent of the formation. Following the 
correlated section of Turner and Peterson (1999), lo-
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Figure 4. (A) The stratigraphic section of the Morrison Formation (from Turner and Peterson, 1999) with the 
recalibrated dates of Trujillo and Kowallis (2015). Note the locations of the Mygatt-Moore Quarry (CO-21; red) 
and the O’Hair Quarries (MT-2; blue). In Turner and Peterson (1999) the Mygatt-Moore Quarry was correlated 
within the upper portion of the upper Brushy Basin Member between 147.8 ± 0.6 and 150.3 ± 0.3 Ma. With the 
recalibrated 40Ar/39Ar dates of Trujillo and others (2014), this locality still remains within the upper portion of the 
upper Brushy Basin Member, but now at 152.18 ± 0.29 Ma. The outlined blue box represents the correlated posi-
tion of O’Hair Quarries (MT-2) from Turner and Peterson (1999). The solid blue box represents this locality’s new 
correlated position based on new magnetostratigraphic (Maidment and Muxworthy, 2016) and sequence strati-
graphic studies (McMullen and others, 2014; McMullen, 2016). The undulating gray line is to cross out the “clay 
change” of Turner and Peterson (1999). Portions of this image – particularly those pertaining to the palynomorph 
zones and the recalibrated 40Ar/39Ar dates – are modified from Trujillo (2016). (B) Possible trends in Camarasau-
rus body size throughout the formation. (C) Possible explanation of Kaatedocus within the evolutionary trajectory 
of Diplodocus. Silhouettes by S. Hartman available via PhyloPic (Creative Commons Attribution-ShareAlike 3.0 
Unported).
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calities from Montana were placed equivalently within 
the upper portion of the Salt Wash Member (specifi-
cally the O’Hair Quarries; Cooley and Schmitt, 1998; 
Schimelfening and others, 2014). In addition to correla-
tion with the DNM section, association with the under-
lying marine Swift Formation and the predominance of 
sandstone to mudstone beds, all supported a Salt Wash 
Member-equivalent position (Cooley and Schmitt, 
1998; Turner and Peterson, 1999; Schimelfening and 
others, 2014). However, new magnetostratigraphic 
(Maidment and Muxworthy, 2016) and sequence strati-
graphic analyses (McMullen and others, 2014; McMul-
len, 2016) are changing the position of these localities. 
The magnetostratigraphic analyses of Maidment and 
Muxworthy (2016) proposes that the O’Hair Quarries 
are temporally equivalent to the upper Brushy Basin 
Member in Dinosaur National Monument (figure 4). 

How then can stratigraphic correlation and mag-
netostratigraphy produce such different results? In the 
beginning of the deposition of the Morrison Formation, 
the terrestrial area in the southwest was adjacent to the 
Sundance Sea. Later this same region was seasonally arid, 
or savanna-like (Foster, 2007).  But as the Sundance Sea 
kept retreating northwards, the contiguous terrestrial 
deposits would continue to have a coastal composition. 
Systems and environments do vary latitudinally, but the 
lower stratigraphic placement of the Montana localities 
could be due to an inaccurate stratigraphic signal. A 
time-transgressive Morrison Formation has been previ-
ously proposed by Harris and Dodson (2004) and Har-
ris (2005), and perhaps the geographical extremes of 
the formation are the better locations to study this phe-
nomenon. If this is correct, then due to the regression 
of the Sundance Sea, by the time Montana had become 
terrestrial, it would have been temporally equivalent to 
Dinosaur National Monument. But the coastal environ-
ment in Montana would result in depositional systems 
similar to those recognized in the lower and earlier por-
tions of the formation. 

In light of these newer and ongoing studies, the 
work of Turner and Peterson (1999) should still be com-
mended. Prior to Turner and Peterson (1999), Morrison 
Formation stratigraphic research had little, if any, cohe-
sion or unity. Workers outside of the Colorado Plateau 
region were unable to place and understand their local-

ities within the context of the entire formation. The cor-
relatable “clay change” of Turner and Peterson (1999) at 
the time seemed to change that. Even in consideration 
of these studies incorporating new techniques/recali-
bration (Trujillo and Chamberlain, 2013; Trujillo and 
others, 2014; Trujillo and Kowallis, 2015), the Morrison 
Formation may be too large to correlate, and perhaps 
geographical regions are not a part of the same deposi-
tional system (S. McMullen, Hess Corporation, written 
communication, 2018). Certainly, regional correlation 
may still possible, but the aforementioned radiometric, 
magnetostratigraphic, and sequence stratigraphic stud-
ies collectively suggest that incorporating all of this new 
information should result in a better and more accu-
rate reconstruction of these localities. An initial blend 
of this new information is already being performed by 
Tschopp and others (2016). By taking Morrison Forma-
tion diplodocid occurrences and incorporating them 
into the magnetostratigraphy of Maidment and Mux-
worthy (2016), Tschopp and others (2016) may be able 
to reanalyze these basic Morrison Formation sauropod 
questions, and I greatly await these results and future 
works.

Furthermore, while we continue to relocate, recal-
ibrate, and reanalyze specimens within a stratigraphic 
context, we can thus far identify—even at coarse resolu-
tion—some levels of biozones (sensu Foster, 2003, 2007; 
figure 5). Due to the inherent inaccuracies in assuming 
formational homogeneity, Foster (2003, 2007) suggest-
ed that differing paleoenvironments throughout the for-
mation would consist of differing groups of dinosaurs. 
The benefits of biozone demarcations are that they re-
flect environmental groupings throughout the course of 
the formation (i.e., environments + time versus strict-
ly time). Until we have a better understanding of the 
time component, which admittedly could significantly 
alter the biozone signals, grouping via biozones may be 
a more neutral way to group or demarcate Morrison 
Formation sauropod taxa. There are four tentative bio-
zone signals that we may see within the Morrison For-
mation. (1) The lowermost occurrence of Barosaurus, 
Dystrophaeus, and Haplocanthosaurus in Zone 1 may 
indicate that these forms could represent or be relics of 
pre-Morrison Formation sauropod genera. (2) The low 
sauropod diversity of Zones 1, 3, and 6 could indicate 
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negative events/environments, or this signal could in-
dicate poor sampling. (3) The ecology of Zones 5 and 
6 may have been more conducive to speciation—these 
zones exhibit the most genera and the greatest number 
of species. (4) Out of all of the sauropod genera that 
appear in at least two zones, only Barosaurus and Bra-
chiosaurus have a single species—such could indicate 
something special about their biology (being longer oc-
curring species), or their diversity (number of species) 
may be incorrect (note that Woodruff and others, 2017 
suggest that based on possible morphologic differences 
seen stratigraphically, Barosaurus may represent more 
than a single species).

Ecological Capacity
In addition to ontogeny and stratigraphy, there are 

several other factors at play that could equally be inter-
fering with our signal of Morrison Formation sauropod 
diversity. As previously mentioned, 24 different kinds 
of multi-ton herbivores across a single landscape would 
theoretically be ecologically taxing. Many studies have 
proposed ecological segregation among the Morrison 
Formation sauropods including feeding height (Bakker, 
1971; Dodson and others, 1980; Bakker, 1986; Martin, 
1987; Stevens and Parrish, 1999, 2005; Upchurch and 
Barrett, 2000; Christian, 2002; Foster, 2003, 2007; Dz-
emski and Christian, 2007; Christian, 2010; Hummel 
and Clauss, 2011), dietary niche partitioning (Gal-
ton, 1986; Fiorillo, 1998; Upchurch and Barrett, 2000; 
Christian, 2002; Foster, 2003, 2007; Engelmann and 
others, 2004; Stevens and Parrish, 2005; Carpenter, 
2006; Whitlock and others, 2010; Hummel and Clauss, 
2011; Young and others, 2012; D’Emic and others, 2013; 
Button and others, 2014; Woodruff and others, 2015), 
or ontogenetic segregation (Dodson and others, 1980; 
Foster, 2003; Myers and Storrs, 2007; Myers and Fioril-
lo, 2009; Woodruff and others, 2015). Such ecological 
segregation undoubtedly had to occur, and likely sev-
eral of these forms co-occurred—such as young sauro-
pods feeding on different plant material than their adult 
forms (sensu Whitlock and others, 2010 and Woodruff 
and others, 2015). Not only are feeding-related factors 
important, but so too is their respect to body size. The 
African savanna today is made up a multitude of co-oc-

curring herbivores ranging from the dik-dik (up to 6 kg; 
Grubb, 2005) to the African elephant (up to 10,400 kg; 
Larramendi, 2016). Several exemplary studies have ex-
amined the relationship between body size and foraging 
height to explain the extreme prevalence of herbivores 
in this ecosystem (Du Toit, 1990, 2003; Woolnough and 
Du Toit, 2001; Fritz and others, 2003; Cameron and Du 
Toit, 2006; Anderson and others, 2016), and possibly 
a similar body size to feeding height/vegetation type 
stratification occurred within the sauropods of the Mor-
rison Formation. Perhaps the predominance of small-
er body sized Morrison Formation sauropods, such as 
Camarasaurus (approximately 12,530 kg for C. grandis; 
specimen GMNH 101 – this analysis) versus the rarity 
of larger body sized taxa, such as Supersaurus (36,287 
kg; Lovelace and others, 2008) may be analogous to the 
pattern seen in the African savanna.

Individual Morphological Variation
within Species

Another possible confounding factor is individual 
variation. Unlike the degree of variation observed with-
in hadrosaurs (Campione and Evans, 2011; Fowler and 
Horner, 2015; Woodward and others, 2015; McFeeters 
and others, 2018; Takasaki and others, 2018) and cera-
topsians (Scannella and Horner, 2010; Frederickson and 
Tumarkin-Deratzian, 2014; Scannella and others, 2014; 
Campbell and others, 2016, 2018), the exacting degrees 
of morphologic variation in Morrison Formation sauro-
pods have not been precisely quantified. Morrison sau-
ropod workers have colloquially referred to observed 
variation, but as morphologic variation in sauropods 
can derive from taxonomy or body size (among others), 
denoting whether a character is taxonomically distinct 
or within the range of variation can become more neb-
ulous (Foster, 2015). Also, treating what may be contin-
uous variation as discrete characters from low sample 
sizes is likely to be problematic (J. Foster, Utah Field 
House of Natural History State Park Museum, written 
communication, 2018). As an example, let us examine 
cranial openings. One could presume that the number 
of cranial openings would be a significant taxonomic 
signal. Therefore, said number or presence/absence of 
specific openings would seemingly be a strong phyloge-
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netic indicator. And yet, this is absolutely not the case 
in Camarasaurus. The frontal aperture (Woodruff and 
Foster, 2017) is variably present among Camarasaurus 
specimens of various species and body sizes (echoed in 
Madsen and others, 1995). If the presence of an extra 
cranial opening is demonstrably not a taxonomically vi-
able character in a Morrison Formation sauropod, then 
what characters are significant, and how do we begin to 
measure and quantify such variability?

CONCLUSIONS
The information presented herein and throughout 

this themed set of Morrison Formation papers, begin-
ning in 2016 in the Geology of the Intermountain West, 
will hopefully contribute to a shift in our understanding 
of the true nature and complexities within the Morri-
son. In regard to the sauropod diversity, the Morrison 
Formation may have legitimately exhibited unparal-
leled sauropod diversity. However, stratigraphy and on-
togeny, among others, have been demonstrated to have 
repercussions on diversity estimates. 

Previously, the Hell Creek Formation was thought 
to harbor nearly three dozen dinosaurian species. 
However, subsequent analyses examining the critical 
variables of ontogeny, stratigraphy, and variation have 
shown that while still highly diverse, this diversity is in 
actuality constructed by less than half of the perceived 
species (Carr and Williamson, 2004; Horner and Good-
win, 2009; Scannella and Horner, 2010; Campione and 
Evans, 2011). Certainly, there are unique attributes of 
the Morrison Formation, one such is clade represen-
tation. Within the Hell Creek Formation, species rich-
ness seems fairly evenly distributed across the different 
clades. Yet, in the Morrison Formation, the dominating 
clade constitutes almost an equal number of species to 
all the other clades combined (26 versus 24, respec-
tively). As in the Hell Creek Formation, the Morrison 
Formation was likely very species rich. This review is 
not meant to admonish against richness, merely to con-
template the multifaceted factors that could affect said 
richness.

In consideration of the expanse that is the Morrison 
Formation, approximately 7 million years, and a geo-
graphical range of 14 degrees of latitude and 12 degrees 

of longitude (Kowallis and others, 1998; Turner and Pe-
terson, 1999; Foster, 2007; Trujillo and Kowallis, 2015), 
stratigraphy, ontogeny, variation, evolutionary patterns, 
and environments should have some effect on sauropod 
diversity. Currently the degree or significance of these 
factors towards Morrison Formation sauropod diversi-
ty is unresolved; yet in another formation it has been 
demonstrated that these factors do alter diversity recon-
structions. Therefore, until these factors are accounted 
for, we may not be accurately reconstructing the true 
diversity of sauropods within the Morrison Formation.
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